
ExpProof : Operationalizing Explanations for Confidential Models with ZKPs

Chhavi Yadav†∗, Evan Monroe Laufer‡∗, Dan Boneh‡, Kamalika Chaudhuri†
†UC San Diego {cyadav,kamalika}@ucsd.edu

‡Stanford University {emlaufer,dabo}@stanford.edu
∗Equal Contribution

Abstract—Explanations are intended as a way to increase
trust in machine learning models and are often obligated by
regulations. However, many circumstances where these are
demanded are adversarial in nature, meaning the involved
parties have misaligned interests and are incentivized to manip-
ulate explanations for their purpose. As a result, explainability
methods fail to be operational in such settings despite the
demand. In this paper, we take a step towards operationalizing
explanations in adversarial scenarios with Zero-Knowledge
Proofs (ZKPs), a cryptographic primitive. Specifically we ex-
plore ZKP-amenable versions of the popular explainability
algorithm LIME and evaluate their performance on Neural
Networks and Random Forests. Our code is available at :
https://github.com/infinite-pursuits/ExpProof.

1. Introduction

“Bottom line: Post-hoc explanations are highly prob-
lematic in an adversarial context” [5]

Explanations have been seen as a way to enhance trust
in machine learning (ML) models by virtue of making them
transparent. Although starting out as a debugging tool, they
are now also widely proposed to prove fairness and sensibil-
ity of ML-based predictions for societal applications, in re-
search studies [15, 16, 20, 23, 24, 31, 32, 33] and regulations
alike (Right to Explanation [34]). However, as discussed in
detail by [5], many of these use-cases are adversarial in
nature where the involved parties have misaligned interests
and are incentivized to manipulate explanations to meet their
ends. For e.g. a bank which denies loan to an applicant based
on an ML model’s prediction has an incentive to return an
incontestable explanation to the applicant rather than reveal
the true workings of the model since the explanation can be
used by the applicant to prove discrimination in the court of
law [5]. In fact, many previous studies show that adversarial
manipulations of explanations are possible in realistic set-
tings with systematic and computationally feasible attacks
[28, 29, 30, 37]. As such, despite the demand, explanations
fail to be operational as a trust-enhancing tool.

A major barrier to using explanations in adversarial
contexts is that organizations keep their models confidential
due to IP and legal reasons. However, confidentiality aids
in manipulating explanations by allowing model swapping

Figure 1. Pictorial Representation of ExpProof

– a model owner can use different models for generating
predictions vs. explanations, swap the model for specific
inputs, or change the model post-audits [30, 36, 38]. This
problem demands a technical solution which guarantees that
a specific model is used for all inputs, for generating both the
prediction and the explanation and prove this to the customer
on the receiving end while keeping the model confidential.

Another important barrier to using explanations in ad-
versarial contexts is that many explanation algorithms are
not deterministic and have many tunable parameters. An
adversary can choose these parameters adversarially to make
discriminatory predictions seem benign. Moreover, there is
no guarantee that the model developer is following the
explanation algorithm correctly to generate explanations. A
plausible solution to counter this problem is consistency
checks [3, 6]. Apart from being a rather lopsided ask
where the onus of proving correctness of explanations lies
completely on the customer, these checks require collecting
multiple explanation-prediction pairs for different queries
and are therefore infeasible for individual customers in the
real world. Compounding the issue, it has been shown that
auditing local explanations with consistency checks is hard
[3]. Note that many of these issues persist even with a
perfectly faithful algorithm for generating explanations.

We address the aforementioned challenges by proposing
a system called ExpProof. ExpProof gives a protocol con-
sisting of (1) cryptographic commitments which guarantee
that the same model is used for all inputs and (2) Zero-
Knowledge Proofs (ZKPs) which guarantee that the explana-
tion was computed correctly using a predefined explanation
algorithm, both while maintaining model confidentiality. See
Fig. 1 for a pictorial representation of ExpProof.

ExpProof ensures uniformity of the model and expla-
nation parameters through cryptographic commitments [4].

https://github.com/infinite-pursuits/ExpProof

Commitments publicly bind the model owner to a fixed set
of model weights and explanation parameters while keeping
the model confidential. Commitments for ML models are a
very popular and widely researched area in cryptography
and hence we use standard procedures to do this [17].

Furthermore, we wish to allow the customer to verify
that the explanation was indeed computed correctly using
the said explanation algorithm, without revealing model
weights. To do this, we employ a cryptographic primitive
called Succinct Zero-Knowledge Proofs [10, 11]. ZKPs
allow a prover (bank) to prove a statement (explanation)
about its private data (model weights) to the verifier (cus-
tomer) without leaking the private data. The prover outputs a
cryptographic proof and the verifier on the other end verifies
the proof in a computationally feasible way. In our case,
if the proof passes the verifier’s check, it means that the
explanation was correctly computed using the explanation
algorithm and commited weights without any manipulation.

How are explanations computed? The explanation algo-
rithm we use in our paper is a popular one called LIME [27],
which returns a local explanation for the model decision
boundary around an input point. We choose a local explana-
tion rather than a global one since customers are often more
interested in the behavior of the model around their input
specifically. Additionally, LIME is model-agnostic, meaning
that it can be used for any kind of model class.

Traditionally ZKPs are slow and infamous for adding
a huge computational overhead for proving even seemingly
simple algorithmic steps. Moreover many local explanation
algorithms require solving an optimization problem and
involve non-linear functions such as exponentials, which
makes it infeasible to simply reimplement LIME as-is in
a ZKP library. To remedy these issues, we experiment with
different variants of LIME exploring the resulting tradeoffs
between explanation-fidelity and ZKP-overhead. To make
our ZKP system efficient, we also utilize the fact that
verification can be easier than re-running the computation
– instead of solving the optimization problem within ZKP,
we verify the optimal solution using duality gap.

Experiments. We evaluate ExpProof on fully connected
ReLU Neural Networks and Random Forests for three
standard datasets on an Ubuntu Server with 64 CPUs of
x86 64 architecture and 256 GB of memory without any
explicit parallelization. Our results show that ExpProof is
computationally feasible, with a maximum proof generation
time of 1.5 minutes, verification time of 0.12 seconds and
proof size of 13KB for NNs and standard LIME.

2. LIME and its variants

Local Interpretable Model-Agnostic Explanations
(LIME) [27] explains the prediction for an input point
by approximating the local decision boundary around
that point with a linear model. Formally, given an input
point x ∈ X , a complex non-interpretable classifier
f : X → Y and an interpretable class of models G, LIME
explains the prediction f(x) ∈ Y with a local interpretable
model g ∈ G. The interpretable model g is found from

the class G via learning, on a set of points randomly
sampled around the input point and weighed according
to their distance to the input point, as measured with a
similarity kernel π. The similarity kernel creates a locality
around the input by giving higher weights to samples
near input x as compared to those far off. A natural and
popular choice for the interpretable class of models G is
linear models such that for any g ∈ G, g(z) = wg · z
([9, 27]), where wg are the coefficients of linear model
g. These coefficients highlight the contribution of each
feature towards the prediction and therefore serve as
the explanation in LIME. Learning the linear model is
formulated as a weighted LASSO problem, since sparsity
induced by ℓ1 regularization leads to more interpretable
and human-understandable explanations. The similarity
kernel is set to be the exponential kernel with ℓ2 norm as
the distance function, πx(z) = exp

(
−ℓ2(x, z)2/σ2

)
where

σ is the bandwidth parameter of the kernel and controls
locality around input x.

Building zero-knowledge proofs of explanations requires
the explanation algorithm to be implemented in a ZKP
library which is known to introduce a significant compu-
tational overhead. Given this, a natural question that comes
to mind is if there exist variants of LIME which provide
similar quality of explanations but are more ZKP-amenable
by design, meaning they introduce a smaller ZKP overhead?

Standard LIME Variants. To create variants of stan-
dard LIME (Alg.1), we focus on the two steps which are
carried out numerous times and hence create a computa-
tional bottleneck in the LIME algorithm – sampling around
input x (Step 6 in Alg. 1) and computing distance using
exponential kernel (Step 7 in Alg. 1). For sampling, we
propose two options as found in the literature : gaussian (G)
and uniform (U) [8, 9, 27]. For the kernel we propose to
either use the exponential (E) kernel or no (N) kernel. These
choices give rise to four variants of LIME, mentioned in Alg.
2. We address each variant by the intials in the brackets,
for instance standard LIME with uniform sampling and no
kernel is addressed as ‘LIME U+N’.

We propose another variant of LIME called BorderLIME
to consider inputs far off from the decision boundary where
the LIME algorithm returns trivial explanations. For com-
plete algorithms and more details refer to the Appendix.

3. ExpProof : Verification of Explanations

Our system for operationalizing explanations in adver-
sarial settings, ExpProof, consists of two phases: (1) a One-
time Commitment phase and (2) an Online verification phase
which should be executed for every input.

Commitment Phase. To ensure model uniformity, the
model owner cryptographically commits to a fixed set of
model weights W belonging to the original model f , re-
sulting in committed weights comW. Architecture of model
f is assumed to be public. Additionally, model owner can
also commit to the values of different parameters used in the
explanation algorithm or these parameters can be public.

Online Verification Phase. This phase is executed every
time a customer inputs a query. On receiving the query, the
prover (bank) outputs a prediction, an explanation and a
zero-knowledge proof of the explanation. Verifier (customer)
validates the proof without looking at the model weights. If
the proof passes verification, it means that the explanation is
correctly computed with the committed model weights and
explanation algorithm parameters.

To generate the explanation proof, a ZKP circuit which
implements (a variant of) LIME is required. However since
ZKPs can be computationally inefficient, instead of reim-
plementing the algorithm as-is in a ZKP library, we devise
some smart strategies for verification, based on the fact that
verification can be easier than redoing the computation. We
describe verification strategies for these functionalities in
Appendix Sec. D.

4. Experiments

Setup. We use three standard fairness benchmarks for
experimentation : Adult [2], Credit [39] and German Credit
[13]. We train two kinds of models on these datasets, 2-layer
fully connected ReLU activated neural networks and random
forests. We code ExpProof with different variants of LIME
in the ezkl library [19] (Version 18.1.1) which uses Halo2
[40] as its underlying proof system in the Rust programming
language, resulting in ∼ 3.7k lines of code.

Research Questions & Metrics. We ask two questions
for the different variants of LIME (Q1) How faithful are
the explanations generated by the LIME variant? and (Q2)
What is the time and memory overhead introduced by
implementing the LIME variant in a ZKP library?

To answer Q1, we need a measure of fidelity of the
explanation, we use ‘Prediction Similarity’ defined as the
similarity of predictions between the explanation classifier
and the original model in a local region around the input. To
answer Q2, we will look at the proof generation time taken
by the prover to generate the ZK proof, the verification time
taken by the verifier to verify the proof and the proof length
which measures the size of the generated proof.

4.1. Standard LIME Variants

Fidelity Results. As shown in Fig. 2, we do not find
a huge difference between the explanation fidelities of the
different variants of LIME as the error bars significantly
overlap. This could be due to the small size of the local
neighborhoods where the kernel or sampling doesn’t mat-
ter much. However, for the credit dataset, which has the
highest number of input features, gaussian sampling works
slightly better than uniform, which could be because of the
worsening of uniform sampling with increasing dimension.

ZKP Overhead Results. Across the board, proof gener-
ation takes a maximum of ∼ 1.5 minutes, verification time
takes a maximum of ∼ 0.12 seconds and proof size is a
maximum of ∼ 13KB, as shown in Fig. 3. Note that while
proof generation time is on the order of minutes, verifica-
tion time is on the order of seconds – this is due to the

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Figure 2. Results for NNs. G/U: gaussian or uniform sampling, E/N: using
or not using the exponential kernel. Fidelity of variants of Standard LIME.

inherent design of ZKPs, requiring much lesser resources at
the verifier’s end (contrary to consistency-based explanation
checks). We also observe that the dataset type does not have
much influence on the ZKP overhead; this is due to same
ZKP backend parameters needed across datasets.

Furthermore, we see that gaussian sampling leads to a
larger ZKP overhead. This can be attributed to our imple-
mentation of gaussian sampling in the ZKP library, wherein
we first create uniform samples and then transform them to
gaussian samples using the inverse CDF method, leading to
an additional step in the gaussian sampling ZKP circuit as
compared to that of uniform sampling. Similarly, using the
exponential kernel leads to a larger overhead over not using
it due to additional steps related to verifying the kernel.

Overall, ‘gaussian sampling and no kernel’ variant of
LIME is likely the most amenable for a practical ZKP
system as it produces faithful explanations with a small
overhead.

Adult Credit German
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(m

in
s)

G + E
G + N
U + E
U + N

Adult Credit German
0

2

4

6

8

10

12

14

16

Pr
oo

f S
ize

 (K
B)

G + E
G + N
U + E
U + N

Adult Credit German
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ve
rif

ica
tio

n
Ti

m
e

(s
ec

s)

G + E
G + N
U + E
U + N

Figure 3. Results for NNs. G/U: gaussian or uniform sampling, E/N: using
or not using the exponential kernel. Left: Proof Generation Time (in mins),
Mid: Proof Size (in KBs), Right: Verification times (in secs) for different
variants of Standard LIME. All configurations use the same number of
Halo2 rows, 218, and lookup tables of size 200k.

All other experiments and all details can be found in the
Appendix.

Conclusion & Future Work In this paper we take a step
towards operationalizing explanations in adversarial contexts
where the involved parties have misaligned interests. We
propose a protocol ExpProof using Commitments and Zero-
Knowledge Proofs, which provides guarantees on the model
used and correctness of explanations in the face of confiden-
tiality requirements. We propose ZKP-efficient versions of
the popular explainability algorithm LIME and demonstrate
the feasibility of ExpProof for Neural Networks & Random
Forests.

An interesting avenue for future work is the tailored
design of explainability algorithms for high ZKP-efficiency
and inherent robustness to adversarial manipulations. An-
other interesting avenue is finding other applications in ML
where ZKPs can ensure verifiable computation and provide
trust guarantees without revealing sensitive information.

References

[1] U. Aı̈vodji, H. Arai, O. Fortineau, S. Gambs, S. Hara,
and A. Tapp. Fairwashing: the risk of rationalization.
In International Conference on Machine Learning,
pages 161–170. PMLR, 2019.

[2] B. Becker and R. Kohavi. Adult. UCI
Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

[3] R. Bhattacharjee and U. von Luxburg. Auditing local
explanations is hard. arXiv preprint arXiv:2407.13281,
2024.

[4] M. Blum. Coin flipping by telephone a protocol for
solving impossible problems. ACM SIGACT News,
15(1):23–27, 1983.

[5] S. Bordt, M. Finck, E. Raidl, and U. von Luxburg.
Post-hoc explanations fail to achieve their purpose in
adversarial contexts. In Proceedings of the 2022 ACM
Conference on Fairness, Accountability, and Trans-
parency, pages 891–905, 2022.

[6] S. Dasgupta, N. Frost, and M. Moshkovitz. Framework
for evaluating faithfulness of local explanations. In
International Conference on Machine Learning, pages
4794–4815. PMLR, 2022.

[7] S. Garg, A. Goel, S. Jha, S. Mahloujifar, M. Mah-
moody, G.-V. Policharla, and M. Wang. Experimenting
with zero-knowledge proofs of training. In Proceed-
ings of the 2023 ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1880–1894,
2023.

[8] D. Garreau and U. Luxburg. Explaining the ex-
plainer: A first theoretical analysis of lime. In In-
ternational conference on artificial intelligence and
statistics, pages 1287–1296. PMLR, 2020.

[9] D. Garreau and U. von Luxburg. Looking deeper into
tabular lime. arXiv preprint arXiv:2008.11092, 2020.

[10] O. Goldreich, S. Micali, and A. Wigderson. Proofs
that yield nothing but their validity or all languages
in np have zero-knowledge proof systems. J. ACM,
38(3):690–728, jul 1991.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The knowl-
edge complexity of interactive proof-systems. In Pro-
ceedings of the Seventeenth Annual ACM Symposium
on Theory of Computing, STOC ’85, page 291–304,
New York, NY, USA, 1985. Association for Computing
Machinery.

[12] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy,
and M. Schofnegger. Poseidon: A new hash function
for Zero-Knowledge proof systems. In 30th USENIX
Security Symposium (USENIX Security 21), pages 519–
535. USENIX Association, Aug. 2021.

[13] H. Hofmann. Statlog (German Credit Data).
UCI Machine Learning Repository, 1994. DOI:
https://doi.org/10.24432/C5NC77.

[14] M. Jordan, J. Lewis, and A. G. Dimakis. Provable
certificates for adversarial examples: Fitting a ball in
the union of polytopes. Advances in neural information
processing systems, 32, 2019.

[15] A.-H. Karimi, G. Barthe, B. Schölkopf, and I. Valera.
A survey of algorithmic recourse: definitions, for-
mulations, solutions, and prospects. arXiv preprint
arXiv:2010.04050, 2020.

[16] L. Kästner, M. Langer, V. Lazar, A. Schomäcker,
T. Speith, and S. Sterz. On the relation of trust and
explainability: Why to engineer for trustworthiness.
In 2021 IEEE 29th International Requirements Engi-
neering Conference Workshops (REW), pages 169–175.
IEEE, 2021.

[17] A. Kate, G. M. Zaverucha, and I. Goldberg. Constant-
size commitments to polynomials and their applica-
tions. In Advances in Cryptology-ASIACRYPT 2010:
16th International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Sin-
gapore, December 5-9, 2010. Proceedings 16, pages
177–194. Springer, 2010.

[18] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and
D. Gorinevsky. An interior-point method for large-
scale ℓ1-regularized least squares. IEEE Journal of
Selected Topics in Signal Processing, 1(4):606–617,
2007.

[19] Konduit. ezkl: Efficient zero-knowledge machine
learning. https://github.com/zkonduit/ezkl, 2024. Ac-
cessed: 2025-01-21.

[20] M. Langer, D. Oster, T. Speith, H. Hermanns,
L. Kästner, E. Schmidt, A. Sesing, and K. Baum. What
do we want from explainable artificial intelligence
(xai)?–a stakeholder perspective on xai and a con-
ceptual model guiding interdisciplinary xai research.
Artificial Intelligence, 296:103473, 2021.

[21] T. Laugel, M.-J. Lesot, C. Marsala, X. Renard, and
M. Detyniecki. Inverse classification for comparison-
based interpretability in machine learning. arXiv
preprint arXiv:1712.08443, 2017.

[22] T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, and
M. Detyniecki. Defining locality for surrogates in post-
hoc interpretablity. arXiv preprint arXiv:1806.07498,
2018.

[23] D. Leben. Explainable ai as evidence of fair decisions.
Frontiers in Psychology, 14:1069426, 2023.

[24] Q. V. Liao and K. R. Varshney. Human-centered ex-
plainable ai (xai): From algorithms to user experiences.
arXiv preprint arXiv:2110.10790, 2021.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural
information processing systems, 32, 2019.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, et al. Scikit-learn: Machine
learning in python. the Journal of machine Learning
research, 12:2825–2830, 2011.

[27] M. T. Ribeiro, S. Singh, and C. Guestrin. ” why
should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and

https://github.com/zkonduit/ezkl

data mining, pages 1135–1144, 2016.
[28] A. Shahin Shamsabadi, M. Yaghini, N. Dullerud,

S. Wyllie, U. Aı̈vodji, A. Alaagib, S. Gambs, and
N. Papernot. Washing the unwashable: On the (im)
possibility of fairwashing detection. Advances in Neu-
ral Information Processing Systems, 35:14170–14182,
2022.

[29] D. Slack, A. Hilgard, H. Lakkaraju, and S. Singh.
Counterfactual explanations can be manipulated. Ad-
vances in neural information processing systems,
34:62–75, 2021.

[30] D. Slack, S. Hilgard, E. Jia, S. Singh, and
H. Lakkaraju. Fooling lime and shap: Adversarial
attacks on post hoc explanation methods. In Proceed-
ings of the AAAI/ACM Conference on AI, Ethics, and
Society, pages 180–186, 2020.

[31] N. A. Smuha. The eu approach to ethics guidelines
for trustworthy artificial intelligence. Computer Law
Review International, 20(4):97–106, 2019.

[32] W. J. Von Eschenbach. Transparency and the black
box problem: Why we do not trust ai. Philosophy &
Technology, 34(4):1607–1622, 2021.

[33] S. Wachter, B. Mittelstadt, and C. Russell. Counter-
factual explanations without opening the black box:
Automated decisions and the gdpr. Harv. JL & Tech.,
31:841, 2017.

[34] Wikipedia contributors. Right to explanation, 2025.
Accessed: 2025-01-14.

[35] C. Yadav, A. R. Chowdhury, D. Boneh, and K. Chaud-
huri. Fairproof : Confidential and certifiable fairness
for neural networks, 2024.

[36] C. Yadav, M. Moshkovitz, and K. Chaudhuri. Xaudit:
A theoretical look at auditing with explanations. arXiv
preprint arXiv:2206.04740, 2022.

[37] C. Yadav, R. Wu, and K. Chaudhuri. Influence-
based attributions can be manipulated. arXiv preprint
arXiv:2409.05208, 2024.

[38] T. Yan and C. Zhang. Active fairness auditing. In
International Conference on Machine Learning, pages
24929–24962. PMLR, 2022.

[39] I.-C. Yeh. default of credit card clients. UCI
Machine Learning Repository, 2016. DOI:
https://doi.org/10.24432/C55S3H.

[40] Zcash Foundation. Halo2: A Plonkish zk-SNARK
implemented in Rust, 2023. Accessed: 2025-01-27.

Appendix

1. Preliminaries

Cryptographic Primitives. We use two cryptographic primitives in this paper, commitment schemes and Zero-
Knowledge Proofs.

Commitment Scheme [4] commits to private inputs w outputting a commitment string comw. A commitment scheme
is hiding meaning that comw does not reveal anything about private input w and binding meaning that there cannot exist
another input w′ which has the commitment comw, binding commitment comw to input w.

Zero-Knowledge Proofs (ZKPs) [10, 11] involve a prover holding a private input w, and a verifier who both have access
to a circuit P . ZKPs enable the prover to convince the verifier that, for some public input x, it holds a private witness w
such that P (x,w) = 1 without revealing any additional information about witness w to the verifier. A ZKP protocol is (1)
complete, meaning that for any inputs (x,w) where P (x,w) = 1, an honest prover will always be able to convince an honest
verifier that P (x,w) = 1 by correctly following the protocol, (2) sound, meaning that beyond a negligible probability, a
malicious prover cannot convince an honest verifier for any input x, that for some witness w, P (x,w) = 1 when infact such
a witness w does not exist, even by arbitrarily deviating from the protocol, and (3) zero-knowledge, meaning that for any
input x and witness w such that P (x,w) = 1 , a malicious verifier cannot learn any additional information about witness
w except that P (x,w) = 1 even when arbitrarily deviating from the protocol. A classic result says that any predicate P in
the class NP can be verified using ZKPs [10].

LIME. Existing literature has put forward a wide variety of post-hoc (post-training) explainability techniques to make
ML models transparent. In this paper, we focus on one of the popular ones, LIME (stands for Local Interpretable Model-
Agnostic Explanations) [27].

LIME explains the prediction for an input point by approximating the local decision boundary around that point with a
linear model. Formally, given an input point x ∈ X , a complex non-interpretable classifier f : X → Y and an interpretable
class of models G, LIME explains the prediction f(x) ∈ Y with a local interpretable model g ∈ G. The interpretable model
g is found from the class G via learning, on a set of points randomly sampled around the input point and weighed according
to their distance to the input point, as measured with a similarity kernel π. The similarity kernel creates a locality around
the input by giving higher weights to samples near input x as compared to those far off. A natural and popular choice
for the interpretable class of models G is linear models such that for any g ∈ G, g(z) = wg · z ([9, 27]), where wg are
the coefficients of linear model g. These coefficients highlight the contribution of each feature towards the prediction and
therefore serve as the explanation in LIME. Learning the linear model is formulated as a weighted LASSO problem, since
the sparsity induced by ℓ1 regularization leads to more interpretable and human-understandable explanations. Following [27],
the similarity kernel is set to be the exponential kernel with ℓ2 norm as the distance function, πx(z) = exp

(
−ℓ2(x, z)2/σ2

)
where σ is the bandwidth parameter of the kernel and controls the locality around input x.

For brevity, we will denote the coefficients corresponding to the linear model g as w instead of wg, unless otherwise
noted. For readers familiar with LIME, without loss of generality we consider the transformation of the points into an
interpretable feature space to be identity in this paper for simplicity of exposition. The complete LIME algorithm with
linear explanations is given in Alg. 1. We will also use ‘explanations’ to mean post-hoc explanations throughout the rest of
the paper.

Algorithm 1 LIME [27]
1: Input: Input point x, Classifier f
2: Parameters: Number of points n to be sampled around input point, Length of explanation K, Bandwidth parameter σ

for similarity kernel
3: Output: Explanation e
4:
5: for i ∈ {1, 2, 3, . . . , n} do
6: zi ← sample around(x)
7: πi ← exp

(
−ℓ2(x, zi)2/σ2

)
8: end for
9: ŵ ∈ argminw

∑n
i=1 πi ×

(
f (zi)− w⊤zi

)2
+ ∥w∥1

10: e := top-K(ŵ,K) ▷ Sorts the weights according to absolute value & returns these along with corresponding features
11: Return Explanation e

2. Problem Setting & Desiderata for Solution

To recall, explanations fail as a trust-enhancing tool in adversarial use-cases and can lead to a false sense of security while
benefiting adversaries. Motivated by these problems, we investigate if a technical solution can be designed to operationalize
explanations in adversarial settings.

Algorithm 2 STANDARD LIME VARIANTS

1: Input: Input point x, Classifier f
2: Parameters: Number of points n to be sampled around input point, Length of explanation K, Bandwidth parameter σ

for similarity kernel, sampling type smpl type, kernel type krnl type
3: Output: Explanation e
4:
5: for i ∈ {1, 2, 3, . . . , n} do
6: if smpl type==‘uniform’ then
7: zi ← uniformly sample around(x)
8: else if smpl type==‘gaussian’ then
9: zi ← gaussian sample around(x)

10: end if
11: if krnl type==‘exponential’ then
12: πi ← exp

(
−ℓ2(x, zi)2/σ2

)
13: else
14: πi = 1
15: end if
16: end for
17: ŵ ∈ argminw

∑n
i=1 πi ×

(
f (zi)− w⊤zi

)2
+ ∥w∥1

18: e := top-K(ŵ,K)
19: Return Explanation e

Formal Problem Setting. Formally, a model owner confidentially holds a classification model f which is not publicly
released due to legal and IP reasons. A customer supplies an input x to the model owner, who responds with a prediction
f(x) and an explanation E(f, x) where E is the possibly-randomized algorithm generating the explanation.

Solution Desiderata. A technical solution to operationalize explanations in adversarial use-cases should provide the
following guarantees.

1) (Model Uniformity) the same model f is used by the model owner for all inputs : our solution is to use cryptographic
commitments which force the model owner to commit to a model prior to receiving inputs,

2) (Explanation Correctness) the explanation algorithm E is run correctly for generating explanations for all inputs : our
solution is to use Zero-Knowledge Proofs, wherein the model owner supplies a cryptographic proof of correctness to
be verified by the customer in a computationally feasible manner,

3) (Model Consistency) the same model f is used for inference and generating explanations : this is ensured by generating
inference and explanations as a part of the same system and by using model commitments,

4) (Model Confidentiality) the model f is kept confidential in the sense that any technique for guaranteeing (1)-(3) does
not leak anything else about the hidden model f than is already leaked by predictions f(x) and explanations E(f, x)
without using the technique : this comes as a by-product of using ZKPs and commitments (See Sec. F for the formal
theorem and proof),

5) (Technique Reliability) the technique used for guaranteeing (1)-(4) is sound and complete (as in Sec.A): this comes as
a by-product of using ZKPs and commitments (See Sec. F for the formal theorem and proof).

Our solution ExpProof which provides the above guarantees will be discussed in Sec. D.

3. Variants of LIME

Building zero-knowledge proofs of explanations requires the explanation algorithm to be implemented in a ZKP library1

which is known to introduce a significant computational overhead. Given this, a natural question that comes to mind is if
there exist variants of LIME which provide similar quality of explanations but are more ZKP-amenable by design, meaning
they introduce a smaller ZKP overhead?

Standard LIME Variants. To create variants of standard LIME (Alg.1), we focus on the two steps which are carried
out numerous times and hence create a computational bottleneck in the LIME algorithm – sampling around input x (Step
6 in Alg. 1) and computing distance using exponential kernel (Step 7 in Alg. 1). For sampling, we propose two options as
found in the literature : gaussian (G) and uniform (U) [8, 9, 27]. For the kernel we propose to either use the exponential (E)
kernel or no (N) kernel. These choices give rise to four variants of LIME, mentioned in Alg. 2. We address each variant by
the intials in the brackets, for instance standard LIME with uniform sampling and no kernel is addressed as ‘LIME U+N’.

1. More precisely, arithmetic circuits for the explanation algorithm are implemented in the ZKP library.

BorderLIME. An important consideration for generating meaningful local explanations is that the sampled neighborhood
should contain points from different classes [22]. Any reasonable neighborhood for an input far off from the decision
boundary will only contain samples from the same class, resulting in vacuous explanations.

To remedy the problem, [21, 22] propose a radial search algorithm, which finds the closest point to the input x belonging
to a different class, xborder, and then uses xborder as the input to LIME (instead of original input x). Their algorithm
incrementally grows (or shrinks) a search area radially from the input point and relies on random sampling within each
‘ring’ (or sphere), looking for points with an opposite label. To cryptographically prove this algorithm, we would either
have to reimplement the algorithm as-is or would have to give a probabilistic security guarantee (using a concentration
inequality), both of which would require many classifier calls and thereby many proofs of inference, becoming inefficient
in a ZKP system.

We transform their algorithm into a line search version, called BorderLIME, given in Alg. 3 and 4, using the notion
of Stability Radius which is now fed as a parameter to the algorithm. The stability radius for an input x, δx, is defined
as the largest radius for which the model prediction remains unchanged within a ball of that radius around the input x.
The stability radius δ is defined as the minimum stability radius across all inputs x sampled from the data distribution D.
Formally, δ = infx∼D δx, where δx = sup{r ≥ 0 | f(x′) = f(x),∀x′ ∈ B(x, r)}. Here B(x, r) = {x′ | ∥x′ − x∥ ≤ r}
denotes a ball of radius r centered at x. Stability radius ensures that for any input from the data distribution, the model’s
prediction remains stable within at least a radius of δ.

Our algorithm samples m directions and then starting from the original input x, takes δ steps until it finds a point with
a different label along all these directions individually. The border point xborder is that oppositely labeled point which is
closest to the input x. Furthermore, unlike in the algorithm in [21], our algorithm can exploit parallelization by searching
along the different directions in parallel since these are independent.

Determining the optimal value of the stability radius is an interesting research question, but it is not the focus of
this work. We leave an in-depth exploration of this topic to future work while providing some high-level directions and
suggestions next. Stability radius can (and perhaps should) be found offline using techniques as proposed in [14, 35] or
through an offline empirical evaluation on in-distribution points. A ZK proof for this radius can be generated one-time, in
an offline manner and supplied by the model developer (for NNs see [35]). It can also be pre-committed to by the model
developer (see Sec. D).

Algorithm 3 BORDERLIME
1: Input: Input point x, Classifier f
2: Parameters: Number of points n to be sampled around input point, Length of explanation K, Bandwidth parameter σ

for similarity kernel
3: Output: Explanation e
4:
5: xborder :=
6: FIND CLOSEST POINT WITH OPP LABEL(x, f) ▷ See Alg. 4
7: e := LIME(xborder, f) ▷ Note that any variant of LIME can be used here
8: Return Explanation e

4. ExpProof : Verification of Explanations

Our system for operationalizing explanations in adversarial settings, ExpProof, consists of two phases: (1) a One-time
Commitment phase and (2) an Online verification phase which should be executed for every input.

Commitment Phase. To ensure model uniformity, the model owner cryptographically commits to a fixed set of model
weights W belonging to the original model f , resulting in committed weights comW. Architecture of model f is assumed
to be public. Additionally, model owner can also commit to the values of different parameters used in the explanation
algorithm or these parameters can be public.

Online Verification Phase. This phase is executed every time a customer inputs a query. On receiving the query,
the prover (bank) outputs a prediction, an explanation and a zero-knowledge proof of the explanation. Verifier (customer)
validates the proof without looking at the model weights. If the proof passes verification, it means that the explanation is
correctly computed with the committed model weights and explanation algorithm parameters.

To generate the explanation proof, a ZKP circuit which implements (a variant of) LIME is required. However since ZKPs
can be computationally inefficient, instead of reimplementing the algorithm as-is in a ZKP library, we devise some smart
strategies for verification, based on the fact that verification can be easier than redoing the computation. Since all the variants
of LIME share some common functionalities, we next describe how the verification strategies for these functionalities. For
more details on the verification for each variant, see Appendix Sec. E.2.

Algorithm 4 FIND CLOSEST POINT WITH OPP LABEL

1: Input: Input point x, Classifier f
2: Parameters: Number of random directions m, Stability radius δ, Iteration Threshold T
3: Output: Opposite label point xborder

4:
5: {u⃗0, u⃗1 · · · u⃗m−1} := Sample m random directions
6: Initialize dist0 · · · distm−1 as inf
7: for u⃗i ∈ {u⃗0, u⃗1 · · · u⃗m−1} do
8: xborderi := x
9: iter := 0

10: while f(xborderi) == f(x) and iter ≤ T do
11: xborderi := xborderi + δu⃗i

12: iter := iter + 1
13: end while
14: if f(xborderi)! = f(x) then
15: disti := ℓ2(x, xborderi)
16: end if
17: end for
18: xborder := xborderi such that i := argmin disti
19: Return xborder

1. Verifying Sampling (Alg. 7, 12, 13). We use the Poseidon [12] hash function to generate random samples. As part
of the setup phase, the prover commits to a random value rp. When submitting an input for explanation, the verifier sends
another random value rv. Prover generates uniformly sampled points using Poseidon with a key rp+rv, which is uniformly
random in the view of both the prover and the verifier. Then, during the proof generation phase, the prover proves that the
sampled points are the correct outputs from Poseidon using ezkl’s inbuilt efficient Poseidon verification circuit. We convert
the uniform samples into Gaussian samples using the inverse CDF, which is checked in the proof using a look-up table for
the inverse CDF.

2. Verifying Exponential Kernel (Alg. 11). ZKP libraries do not support many non-linear functions such as exponential,
which is used for the similarity kernel in LIME (Step 5 of Alg.1). To resolve this problem, we implement a look-up table
for the exponential function and prove that the exponential value is correct by comparing it with the value from the look-up
table.

3. Verifying Inference. Since LIME requires predictions for the sampled points in order to learn the linear explanation,
we must verify that the predictions are correct. To generate proofs for correct predictions, we use ezkl’s inbuilt inference
verification circuit.

4. Verifying LASSO Solution (Alg. 9). ZKP libraries only accept integers and hence all floating points have to be
quantized. Consequently, the LASSO solution for Step 7 of Alg. 1 is also quantized in a ZKP library, leading to small scale
differences between the exact and quantized solutions. To verify optimality of the quantized LASSO solution, we use the
standard concept of duality gap. For a primal objective l and its dual objective g, to prove that the objective value from
primal feasible w is close to that from the primal optimal w∗, that is l(w)− l(w∗) ≤ ϵ, the duality gap should be smaller
than ϵ as well, l(w)− g(u, v) ≤ ϵ where u, v are dual feasible. Since the primal and dual of LASSO have closed forms, as
long we input any dual feasible values, we can verify that the quantized LASSO solution is close to the LASSO optimal.
The prover provides the dual feasible as part of the witness to the proof. See App. Sec.G for closed forms of the primal
and dual functions and for the technique to find dual feasible.

The complete ExpProof protocol can be found in Alg. 5; its security guarantee is given as follows.

Theorem A.1. (Informal) Given a model f and an input point x, ExpProof returns prediction f(x), LIME explanation
E(f, x) and a ZK proof for the correct computation of the explanation, without leaking anything additional about the weights
of model f (in the sense described in Sec.B).

For the complete formal security theorem and proof, refer to App. Sec. F. The proof follows from inherent properties
of ZKPs.

5. Experiments

Datasets & Models. We use three standard fairness benchmarks for experimentation : Adult [2], Credit [39] and German
Credit [13]. Adult has 14 input features, Credit has 23 input features, and German has 20 input features. All the continuous
features in the datasets are standardized. We train two kinds of models on these datasets, neural networks and random forests.

Our neural networks are 2-layer fully connected ReLU activated networks with 16 hidden units in each layer, trained using
Stochastic Gradient Descent in PyTorch [25] with a learning rate of 0.001 for 400 epochs. The weights and biases are
converted to fixed-point representation with four decimal places for making them compatible with ZKP libraries which do
not work with floating points, leading to a ∼ 1% test accuracy drop. Our random forests are trained using Scikit-Learn [26]
with 5-6 decision trees in each forest.

ZKP Configuration. We code ExpProof with different variants of LIME in the ezkl library [19] (Version 18.1.1) which
uses Halo2 [40] as its underlying proof system in the Rust programming language, resulting in ∼ 3.7k lines of code. Our
ZKP experiments are run on an Ubuntu server with 64 CPUs of x86 64 architecture and 256 GB of memory, without any
explicit parallelization. We use default configuration for ezkl, except for 200k rows for all lookup arguments in ezkl and
ExpProof. We use KZG [17] commitments for our scheme that are built into ezkl.

Research Questions & Metrics. We ask the following questions for the different variants of LIME.
Q1) How faithful are the explanations generated by the LIME variant?

Q2) What is the time and memory overhead introduced by implementing the LIME variant in a ZKP library?
To answer Q1, we need a measure of fidelity of the explanation, we use ‘Prediction Similarity’ defined as the similarity

of predictions between the explanation classifier and the original model in a local region around the input. We first sample
points from a local2 region around the input point, then classify these according to both the explanation classifier and the
original model and report the fraction of matches between the two kinds of predictions as prediction similarity. In our
experiments, the local region is created by sampling 1000 points from a Uniform distribution of half-edge length 0.2 or a
Gaussian distribution centered at the input point with a standard deviation of 0.2.

To answer Q2, we will look at the proof generation time taken by the prover to generate the ZK proof, the verification
time taken by the verifier to verify the proof and the proof length which measures the size of the generated proof.

5.1. Standard LIME Variants. In this section we compare the different variants of Standard LIME, given in Alg. 2 Sec. C,
w.r.t. the fidelity of their explanations and ZKP overhead.

Setup. We use the LIME library for experimentation and run the different variants of LIME with number of neighboring
samples n = 300 and length of explanation K = 5. Based on the sampling type, we either sample randomly from a
hypercube with half-edge length as 0.2 or from a gaussian distribution centered around the input point with a standard
deviation of 0.2. Based on the kernel type we either do not use a kernel or use the exponential kernel with a bandwidth
parameter as

√
#features ∗ 0.75 (default value in the LIME library). Rest of the parameters also keep the default values

of the LIME library. Our results are averaged over 50 different input points sampled randomly from the test set.
Results for NNs with 300 neighboring samples and Gaussian sampling for fidelity evaluation are described below. Results

for uniform sampling fidelity evaluation, fidelity evaluation with neighborhood n = 5000 points and all results for RFs can
be found in the Appendix Sec. G.

Fidelity Results. As shown in Fig. 4 left, we do not find a huge difference between the explanation fidelities of the different
variants of LIME as the error bars significantly overlap. This could be due to the small size of the local neighborhoods where
the kernel or sampling doesn’t matter much. However, for the credit dataset, which has the highest number of input features,
gaussian sampling works slightly better than uniform, which could be because of the worsening of uniform sampling with
increasing dimension.

ZKP Overhead Results. Across the board, proof generation takes a maximum of ∼ 1.5 minutes, verification time takes a
maximum of ∼ 0.12 seconds and proof size is a maximum of ∼ 13KB, as shown in Fig. 5. Note that while proof generation
time is on the order of minutes, verification time is on the order of seconds – this is due to the inherent design of ZKPs,
requiring much lesser resources at the verifier’s end (contrary to consistency-based explanation checks). We also observe
that the dataset type does not have much influence on the ZKP overhead; this is due to same ZKP backend parameters
needed across datasets.

Furthermore, we see that gaussian sampling leads to a larger ZKP overhead. This can be attributed to our implementation
of gaussian sampling in the ZKP library, wherein we first create uniform samples and then transform them to gaussian samples
using the inverse CDF method, leading to an additional step in the gaussian sampling ZKP circuit as compared to that of
uniform sampling. Similarly, using the exponential kernel leads to a larger overhead over not using it due to additional steps
related to verifying the kernel.

Overall, ‘gaussian sampling and no kernel’ variant of LIME is likely the most amenable for a practical ZKP system as
it produces faithful explanations with a small overhead.

5.2. BorderLIME. In this section we compare the variants of BorderLIME (Alg. 3, Sec. C) and BorderLIME vs. Standard
LIME w.r.t. the fidelity of their explanations and ZKP overheads.

Setup. We implement BorderLIME with all of the Standard LIME variants (Step 6 of Alg. 3). For the purpose of
experimentation, we fix the iteration threshold to T = 250, number of directions to m = 5. Then to approximate the

2. Note that this local region is for evaluation and is different from the local neighborhood in LIME.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E x1
G+N x1
U+E x1
U+N x1
U+E x3
U+N x3

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 4. Results for NNs. G/U: gaussian or uniform sampling, E/N: using or not using the exponential kernel. Left: Fidelity of different variants of
Standard LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Adult Credit German
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(m

in
s)

G + E
G + N
U + E
U + N

Adult Credit German
0

2

4

6

8

10

12

14

16
Pr

oo
f S

ize
 (K

B)

G + E
G + N
U + E
U + N

Adult Credit German
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ve
rif

ica
tio

n
Ti

m
e

(s
ec

s)

G + E
G + N
U + E
U + N

Figure 5. Results for NNs. G/U: gaussian or uniform sampling, E/N: using or not using the exponential kernel. Left: Proof Generation Time (in mins),
Mid: Proof Size (in KBs), Right: Verification times (in secs) for different variants of Standard LIME. All configurations use the same number of Halo2
rows, 218, and lookup tables of size 200k.

stability radius δ, we incrementally go over the set {0.01, 0.03, 0.05, 0.07, 0.1, 0.15} and use the smallest value for
which an opposite class point is found for all 50 randomly sampled input points. While this is a heuristic approach and
does not guarantee the theoretically minimal stability radius, it provides a practical estimate of stability radius for efficient
experimentation. Once a suitable value of stability radius is identified, we tighten the number of directions by reducing them
while ensuring that at least one opposite-class point exists for each input. Our results are averaged over 50 input points.
The exact parameter values used in our final setup can be found in App. Sec. G.

Results for NNs with 300 neighboring samples and Gaussian sampling for fidelity evaluation are described below. Results
for uniform sampling fidelity evaluation, fidelity evaluation with neighborhood n = 5000 points and all results for RFs can
be found in the Appendix Sec. G.

Fidelity Results. Comparing different variants of BorderLIME based on the LIME implementation, we observe that the
difference in explanation fidelity between gaussian and uniform sampling becomes more pronounced compared to standard
LIME as shown in Fig. 4, reinforcing the importance of gaussian sampling. This gap can sometimes be reduced by using
more neighborhood points, i.e. a larger n, when uniformly sampling. As demonstrated in Fig. 4 mid, with three times more
points for uniform sampling, we can match the fidelity of gaussian explanations for Adult and German datasets. Comparing
the G+N version of BorderLIME and standard LIME in Fig. 4 right, we observe that explanations generated by BorderLIME
are atleast as faithful as standard LIME and can sometimes be better hinting to its capability of generating more meaningful
explanations.

ZKP Overhead Results. We observe that BorderLIME has a larger ZKP overhead than standard LIME as shown in
Table 1; this can be attributed to the additional steps needed in BorderLIME to find the border point with opposite label
(Alg. 4) which also have to be proved and verified. Similar to the previous subsection, the overhead is similar across datasets
and verification is orders of magnitude cheaper than proof generation.

While ExpProof guarantees model and parameter uniformity as well as correctness of explanations for a given model,
it cannot prevent the kinds of manipulation where the model itself is corrupted – the model can be trained to create
innocuous explanations while giving biased predictions. Here usually a regularization term corresponding to the manipulated
explanations is added to the loss function [1, 37]. Preventing such attacks requires a ZK proof of training; this is well-studied
in the literature but is outside the scope of this work and we refer an interested reader to [7].

Furthermore, to provide end-to-end trust guarantees for fully secure explanations, the explanations should be (1) faithful,

ZKP Overhead Type BorderLIME LIME

Proof Generation Time (mins) 4.85 ± 10−2 1.17 ± 10−2

Verification Time (secs) 0.30 ± 10−2 0.11 ± 10−2

Proof Size (KB) 18.30 ± 0 10.40 ± 0
TABLE 1. ZKP OVERHEAD OF BORDERLIME AND STANDARD LIME (BOTH G+N VARIANT) FOR NNS. OVERHEAD FOR BORDERLIME IS LARGER

THAN THAT FOR LIME. RESULTS ARE CONSISTENT ACROSS ALL DATASETS.

stable and reliable, (2) robust to realistic adversarial attacks (such as the one mentioned above) and (3) should also be
verifiable under confidentiality. This paper looks at the third condition by giving a protocol ExpProof and implementing it
for verifiable explanations under confidentiality, which has not been studied prior to our work. As such, we view our work
as complementary and necessary for end-to-end explanation trust guarantees.

Algorithm 5 ExpProof : Provable Explanation for Confidential Models
1: Public Configuration: ZK LIME configuration cc = (smpl type sampling type, LIME kernel variant krnl type,

whether to use border LIME border lime, standard deviation σ, model architecture f , LIME ℓ1 penalty α, maximum
dual gap ϵ)

2: Public Input: Input point x
3: Private Witness: Model weights W
4: Output: Output label o, Explanation e, Proof π that o = f(x) and that e is a valid LIME explanation.
5: Pre-Processing Offline Phase
6: Sample randomness r ← F
7: Commit to the randomness comr and release it publicly
8: Commit to the model weights comW and release it publicly
9: Online Phase

10: o = f(W, x)
11: Compute hi = Poseidon(k, i)
12: Compute LIME perturbations z from samples s
13: y = f(W, z)
14: (e, ŵ)←LIME(f, y, z) ▷ Compute a LIME solution using perturbations z with labels y
15: Compute a feasible dual solution v̂ from ŵ
16: Π←zkLime(cc, x, o, rv, Cr, CW, e;W, y, h, ŵ, v̂)
17: return (o, e,Π)

Algorithm 6 ZK LIME

1: Public Configuration: smpl type sampling type, LIME kernel variant krnl type, whether to use border LIME
border lime, standard deviation σ, model architecture f , LIME ℓ1 penalty α, maximum dual gap ϵ, sampling bit-
width b

2:
3: Public Instance: input point x, model output o, randomness rv, commitment to the randomness Cr, commitment to

the weights CW, e top-k LIME features
4:
5: Private Witness: Model weights W, labels of the LIME samples y, hash outputs h, LIME model ŵ, LIME dual v̂
6: Output: ZK Proof of the computation Π
7: Check that Cr = Com(rp)
8: Check that CW = Com(W)
9: k ← rp + rv

10: ZK CHECK POSEIDON(h, k) ▷ Check that h is generated from Poseidon using key k
11: EZKL.CHECK INFERENCE(f,W, x, o) ▷ Check that o = f(W,x) using EZKL
12: if smpl type==‘uniform’ then
13: s←ZK UNIFORM SAMPLE(h, b) ▷ Check that s is uniform generated from the hashes h
14: else if smpl type==‘gaussian’ then
15: s←ZK GAUSSIAN SAMPLE(h, b) ▷ Check that s is Gaussian generated from the hashes h
16: else
17: return ⊥
18: end if
19: if border lime == true then
20: x←ZK FIND OPP POINT(x, s, num vectors, vector length)
21: s← s[m× d...] ▷ Skip samples used for opposite point for fresh randomness
22: end if
23: for i ∈ |z| do
24: j ← i mod |x|
25: z ← xj + si − 2b−1 ▷ Perturb x with samples s
26: end for
27: if krnl type==‘exponential’ then
28: π ←ZK EXPONENTIAL KERNEL(x, z, σ, π)
29: else
30: π ← 1
31: end if
32: for i ∈ {1, 2, 3, . . . , n} do
33: EZKL.CHECK INFERENCE(f,W, zi, yi) ▷ Check that yi = f(W, zi) using EZKL
34: end for
35: ZK LASSO(z, y, π, ŵ, v̂, α)
36: e =ZK TOP K(ŵ)
37: Generate proof Π of the above computation

Algorithm 7 ZK CHECK POSEIDON

1: Input: hashes h, key k
2: Output: True if each hi generated from Poseidon with key k and input i
3: for hi ∈ h do
4: EZKL.CHECK POSEIDON(hi, k, i) ▷ Check that hi = Poseidon(k, i) using EZKL
5: end for
6: return xborder

Algorithm 8 ZK FIND OPP POINT

1: Input: input x, samples s, number of vectors num vectors, maximum length of each vector vector length
2: Output: Border point xborder if one exists, otherwise x
3: d← |x|
4: step← z[0..d×m].reshape(m, d) ▷ Get m× d samples as m randomly sampled vectors
5: for i ∈ {1, 2, 3, ..., num vectors} do
6: stepi ← stepi × LOOKUP RECIPROCAL SQRT(stepi · stepi)▷ Normalize each step vector using a lookup table for

1/
√
∥(stepi)∥2

7: end for
8: for i ∈ {1, 2, 3, ..., num vectors} do
9: for i ∈ {1, 2, ..., vector length do

10: vi ← i× step size× stepi
11: end for
12: end for
13: y = f(W, v)
14: xborder ← x
15: for i ∈ {vector length, vector length− 1, ..., 2, 1} do
16: for i ∈ {1, 2, ..., num vectors} do
17: if yi ̸= x label then
18: xborder ← vi
19: end if
20: end for
21: end for
22: return xborder

Algorithm 9 ZK LASSO

1: Input: Samples z, labels y, weights π, Lasso solution ŵ, Lasso dual solution v̂, Lasso parameter α, maximum dual
gap ϵ

2: Output: True if the dual solution is feasible and the dual gap is less than ϵ, and False otherwise.
3: for i ∈ {1, 2, 3, . . . , n} do
4: z′i ←

√
πi × zi

5: y′i ←
√
πi × yi

6: end for
7: p← 1

2n∥y
′ − b− wT z′i∥2 + α∥w∥1

8: d← −n
2 ∥v∥

2 + vT (y′ − b)
9: Check p− d ≤ ϵ

10: Let m be the length of each sample zi
11: for i ∈ {1, 2, 3, . . . ,m} do
12: fi ← (XT)iv
13: Check −α ≤ fi ≤ α
14: end for

Algorithm 10 ZK TOP K

1: Input: Lasso solution ŵ, top-k values e
2: Output: True if e contains the top-k values of ŵ, and False otherwise
3: ŵ′ = Sort(ŵ)
4: for i ∈ {1, 2, 3, . . . , k} do
5: (v, j)← ei
6: Check ŵ′

i = v
7: Check ŵj = v
8: end for

Algorithm 11 ZK EXPONENTIAL KERNEL

1: Input: Input point x, LIME samples z, standard deviation σ
2: Output:
3: for i ∈ {1, 2, 3, . . . , N} do
4: square distance = x · zi
5: πi ← LOOKUP EXPONENTIAL(−square distance/σ2) ▷ Check exponential function using a lookup table
6: end for
7: return π

Algorithm 12 ZK UNIFORM SAMPLE

1: Input: Poseidon hashes h, sampling bit-width b
2: Output: Uniform samples z
3: B = ⌊W/b⌋
4: N = ⌈(|x| ∗ n)/B⌉
5: j = 0
6: for i ∈ {1, 2, 3, . . . , N} do
7: Compute z such that zj + zj+12

b + . . .+ zj+B2
B∗b + rem = hi

8: Check that zj + zj+12
b + . . .+ zj+B2

B∗b + rem = hi ▷ Check that the samples are a decomposition of hi

9: for k ∈ {1, 2, 3, . . . , B} do
10: Check that 0 ≤ zi+k < 2B

11: end for
12: Check that 0 ≤ rem < 2B

13: j ← j +B
14: end for
15: return z

6. Security of ExpProof

Completeness. ∀ ZK LIME configurations cc, input points x, and model weights W

Pr

pp← ExpProof.Setup(1k)

(pk, vk)← ExpProof.KeyGen(pp)
(comW, comr)← ExpProof.Commit(pp,W, r)

(o, e, π)← ExpProof.Prove(pp, pk, cc, x, comW,W, comr, rp, rv)
ExpProof.Verify(pp, vk, cc, x, o, e, comW, comr, π) = 1

 = 1.

Proof Sketch. Completeness. The completeness proof mostly follows from the completeness of the underlying proof system
(in our case, Halo2). We must also show that for any set of parameters there exists a LIME solution ŵ and a feasible dual
solution v such that the dual gap between ŵ and v̂ is less than ϵ. We know from the strong duality of Lasso that there
exists a solution w∗ and v∗ such that the dual gap is 0 for any input points and labels, therefore such a solution exists.
However, we also note that the circuit operates on fixed-point, discrete values (not real numbers), and it is not necessarily
true that there are valid solutions in fixed-point. To solve this, the prover can use a larger number of fractional bits until
the approximation is precise enough.

Algorithm 13 ZK GAUSSIAN SAMPLE

1: Input: Poseidon hashes h, sampling bit-width b
2: Output: Gaussian samples z
3: z =ZK UNIFORM SAMPLE(h, b)
4: z = LOOKUP GAUSSIAN INVERSE CDF(z)
5: return z

Knowledge-Soundness. We define the relation Rlime as:

Rlime =

(cc, x, o, e, rv, comW, comr;W, rp, y, h, ŵ, v̂)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

comW = Com(W)
comr = Com(rp)
o← cc.f(W, x)

hi = Poseidon(rp + rv, i)
z ← SAMPLE AROUND(x, cc.σ)

y ← cc.f(W, z)
π ← LIME KERNEL(x)

y = cc.f(W, z)
z′ ←

√
π × z

y′ ←
√
π × y

p← 1
2n∥y

′ − b− ŵT z′∥2 + cc.α∥ŵ∥1
d← −n

2 ∥v̂∥
2 + v̂T (y′ − b)

p− d ≤ cc.ϵ
f ← (XT)v

−cc.α ≤ f ≤ cc.α

There exists an extractor E such that for all probabilistic polynomial time provers P∗

Pr

pp← ExpProof.Setup(1k)

(pk, vk)← ExpProof.KeyGen(pp)
(cc, x, o, e, rv, comW, comr, π)← P(1λ,pk)

ExpProof.Verify(pp, vk, cc, x, o, e, rv, comW, comr) = 1
(W, rp, y, h, ŵ, v̂)← EP (...)

(cc, x, o, e, rv, comW, comr;W, rp, y, h, ŵ, v̂) ̸∈ Rlime

 ≤ negl(λ).

Proof Sketch. Knowledge Soundness. Knowledge-soundness follows directly from the knowledge-soundness of the under-
lying proof system Halo2. The extractor runs the Halo2 extractor and outputs the Halo2 witness. By the construction of the
circuit ZK LIME, the extracted Halo2 witness satisfies the Rlime relation.

Zero-Knowledge. We say a protocol Π is zero-knolwedge if there exists a polynomial time, randomized simulator S
such that for all (pk, vk) = Setup(pp), for all (x,w) ∈ R, for all verifiers V

{P (pk, x, w)} ≈ {S(pk, x)}

Proof Sketch. Zero-Knowledge. Let the simulator S be the Halo2 simulator. For any
(cc, x, o, e, rv, comW, comr,W, rp, y, h, ŵ, v̂) ∈ Rlime, we know that

{ExpProof.P rove(cc, x, o, e, rv;W, rp, y, h, ŵ, v̂)} ≈ {S(cc, x, o, e, rv)}

by zero-knowledge of Halo2.

7. LASSO Primal and Dual

Notation: Let X ∈ Rn×m denote the data inputs, y ∈ Rn denote the labels and α > 0 denote the regularization
parameter or the LASSO constant. Let w ∈ Rm denote the primal variable and v ∈ Rn denote the dual variable.

The primal LASSO objective is given as, 1
2n∥Xw−y∥22+α∥w∥1 while the dual objective function is given as −n

2 ∥v∥
2
2−

v⊤y with the feasibility constraint 0 ≤ L∞
(
X⊤v

)
≤ α [18].

From a LASSO primal feasible w, it is possible to compute a dual feasible v as [18]:
v = 2s(Xw − y)

s = min
{
α/ | 2

((
WTWx

)
i
− 2yi)| |i = 1, . . . , n

}
We find that this dual is close enough to the dual optimal to get a good duality gap, however, in the worst case it is

possible to apply traditional optimization methods to find a dual feasible with a smaller duality gap.

8. NN results

Next in Fig.6 we show results for using uniform sampling in the ‘prediction similarity’ evaluation, keeping rest of the
parameters same. We observe similar numbers as before with very slight differences from Fig.4.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E x1
G+N x1
U+E x1
U+N x1
U+E x3
U+N x3

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 6. Results for NNs for n = 300 neighboring points and uniform sampling in the evaluation. Left: Fidelity of different variants of Standard LIME,
Mid: Fidelity of different variants of BorderLIME, Right: Fidelity of Standard vs. BorderLIME.

Next we increase the neighborhood size, n, in LIME from 300 to 5000 samples and present the results in Fig.7. As
expected the fidelity increases across the board due to better model fitting with a larger number of points. The size of the
error bars only reduces significantly for the German dataset, showing that for more input points the explanations are faithful
to the original decision boundaries. Additionally, the German dataset also has the highest fidelity explanations. Both these
points hints towards smoother or more well-behaved decision boundaries learnt using the German dataset. Furthermore,
BorderLIME consistently outperforms standard LIME pointing to better explanations.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 7. Results for NNs for n = 5000 neighboring points and gaussian sampling in the evaluation. Left: Fidelity of different variants of Standard LIME,
Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

9. RF results

Next in Fig.8 and Fig.9 we show results for fidelity of explanations for Random Forests using gaussian and uniform
sampling in the ‘prediction similarity’ evaluation respectively, keeping rest of the parameters same. We observe results as
for NNs.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 8. Results for RFs for n = 300 neighboring points and gaussian sampling in the evaluation. Left: Fidelity of different variants of Standard LIME,
Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 9. Results for RFs for n = 300 neighboring points and uniform sampling in the evaluation. Left: Fidelity of different variants of Standard LIME,
Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

Next we show the ZKP overheads for RFs in Fig.10 and Table 2. Trends and observations are similar as for NNs.

Adult Credit German
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(m

in
s)

G + E
G + N
U + E
U + N

Adult Credit German
0

5

10

15

20

25

Pr
oo

f S
ize

 (K
B)

G + E
G + N
U + E
U + N

Adult Credit German
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Ve
rif

ica
tio

n
Ti

m
e

(s
ec

s)

G + E
G + N
U + E
U + N

Figure 10. Results for RFs for n = 300 neighboring points. Left: Proof Generation Time (in mins), Mid: Proof Size (in KBs), Right: Verification times
(in secs) for different variants of Standard LIME. All configurations use the same number of Halo2 rows, 218, and lookup tables of size 200k.

ZKP Overhead Type BorderLIME LIME

Proof Generation Time (mins) 8.46± 10−1 2.02± 10−2

Verification Time (secs) 0.44± 10−2 0.14± 10−3

Proof Size (KB) 17.25± 0 16.20± 10−2

TABLE 2. ZKP OVERHEAD OF BORDERLIME AND STANDARD LIME (BOTH G+N VARIANT) FOR RFS FOR 300 NEIGHBORING POINTS. OVERHEAD
FOR BORDERLIME IS LARGER THAN THAT FOR LIME. RESULTS ARE CONSISTENT ACROSS ALL DATASETS.

Next we increase the neighborhood size, n, in LIME from 300 to 5000 samples and present the results in Fig.11. As
expected the fidelity increases across the board due to better model fitting with a larger number of points. We see slight
reduction in error bars for German dataset. BorderLIME equals or outperforms standard LIME.

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

G+E
G+N
U+E
U+N

Adult German Credit
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ed

ict
io

n
Si

m
ila

rit
y

LIME_G+N
BorderLIME_G+N

Figure 11. Results for RFs for neighboring points n = 5000 and gaussian sampling in the evaluation. Left: Fidelity of different variants of Standard
LIME, Mid: Fidelity of different variants of BorderLIME , Right: Fidelity of Standard vs. BorderLIME.

	Introduction
	LIME and its variants
	ExpProof: Verification of Explanations
	Experiments
	Standard LIME Variants

	Appendix
	Preliminaries
	Problem Setting & Desiderata for Solution
	Variants of LIME
	ExpProof: Verification of Explanations
	Experiments
	Standard LIME Variants
	BorderLIME

	Security of ExpProof
	LASSO Primal and Dual
	NN results
	RF results

