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Abstract—Securely computing graph convolutional networks
(GCNs) is critical for applying their analytical capabilities to
privacy-sensitive data like social/credit networks. Multiplying
a sparse yet large adjacency matrix of a graph in GCN—
a core operation in training/inference—poses a performance
bottleneck in secure GCNs. Consider a GCN with |V| nodes and
|E| edges; it incurs a large O(|V|2) communication overhead.

Modeling bipartite graphs and leveraging the monotonicity
of non-zero entry locations, we propose a co-design harmoniz-
ing secure multi-party computation (MPC) with matrix spar-
sity. Our sparse matrix decomposition transforms an arbitrary
sparse matrix into a product of structured matrices. Specialized
MPC protocols for oblivious permutation and selection multi-
plication are then tailored, enabling our secure sparse matrix
multiplication ((SM)2) protocol, optimized for secure multipli-
cation of these structured matrices. Together, these techniques
take O(|E|) communication in constant rounds. Supported by
(SM)2, we present GRACE, a secure 2-party framework that
is communication-efficient and memory-friendly on standard
vertically-partitioned graph datasets. Performance of GRACE

has been empirically validated across diverse network condi-
tions.

1. Introduction

Graphs, representing structural data and topology, are
widely used across various domains, such as social networks
and merchandising transactions. Graph convolutional net-
works (GCN) [1] have significantly enhanced model training
on these interconnected nodes. However, these graphs often
contain sensitive information that should not be leaked
to untrusted parties. For example, companies may analyze
sensitive demographic and behavioral data about users for
applications ranging from targeted advertising to personal-
ized medicine. Given the data-centric nature and analytical
power of GCN training, addressing these privacy concerns
is imperative.

Secure multi-party computation (MPC) [2], [3], [4] is
a critical tool for privacy-preserving machine learning, en-
abling mutually distrustful parties to collaboratively train
models with privacy protection over inputs and (intermedi-
ate) computations. While research advances (e.g., [5], [6],
[7], [8], [9], [10], [11]) support secure training on convo-

TABLE 1: MPC Frameworks for Secure Graph Learning

Framework Scenario Inference Training Security
OblivGNN [15] MLaaS ✓ × Semi-honest
LinGCN [16] MLaaS ✓ × Semi-honest
Penguin [13] MLaaS ✓ × Semi-honest
CoGNN [14] Horizontal ✓ ✓ Semi-honest
GRACE Vertical ✓ ✓ Semi-honest

lutional neural networks (CNNs) efficiently, private GCN
training with MPC over graphs remains challenging.

Graph convolutional layers in GCNs involve multipli-
cations with a (normalized) adjacency matrix containing
|E| non-zero values in a |V| × |V| matrix for a graph
with |V| nodes and |E| edges. The graphs are typically
sparse but large. One could use the standard Beaver-triple-
based protocol to securely perform these sparse matrix
multiplications by treating graph convolution as ordinary
dense matrix multiplication. However, this approach incurs
O(|V|2) communication and memory costs due to computa-
tions on irrelevant nodes. Integrating existing cryptographic
advances, the initial effort of SecGNN [12], [13] requires
heavy communication or computational overhead. Recently,
CoGNN [14] optimizes the overhead in terms of horizontal
data partitioning, proposing a semi-honest secure frame-
work. As in Table 1, research for secure GCN over vertical
data remains nascent.

Current MPC studies, for GCN or not, have primar-
ily targeted settings where participants own different data
samples, i.e., horizontally partitioned data [14]. MPC spe-
cialized for scenarios where parties hold different types of
features [17], [18], [19] is rare. This paper studies 2-party
secure GCN training for these vertical partition cases, where
one party holds private graph topology (e.g., edges) while
the other owns private node features. For instance, LinkedIn
holds private social relationships between users, while banks
own users’ private bank statements. Such real-world graph
structures underpin the relevance of our focus. To our knowl-
edge, no prior work tackles secure GCN training in this
context, which is crucial for cross-silo collaboration.

To realize secure GCN over vertically split data, we
tailor MPC protocols for sparse graph convolution, which
fundamentally involves sparse (adjacency) matrix multipli-
cation. Recent studies have begun exploring MPC protocols
for sparse matrix multiplication (SMM). ROOM [20], a



seminal work on SMM, requires foreknowledge of sparsity
types: whether the input matrices are row-sparse or column-
sparse. Unfortunately, GCN typically trains on graphs with
arbitrary sparsity, where nodes have varying degrees and no
specific sparsity constraints. Moreover, the adjacency matrix
in GCN often contains a self-loop operation represented
by adding the identity matrix, which is neither row- nor
column-sparse. Araki et al. [21] avoid this limitation in their
scalable, secure graph analysis work, yet it does not cover
vertical partition.

To bridge this gap, we propose a secure sparse matrix
multiplication protocol, (SM)2, achieving accurate, efficient,
and secure GCN training over vertical data for the first time.

2. Methods

2.1. New Techniques for Sparse Matrices

The cost of evaluating a GCN layer is dominated by
SMM in the form of AX, where A is a sparse adjacency
matrix of a (directed) graph G and X is a dense matrix of
node features. For unrelated nodes, which often constitute
a substantial portion, the element-wise products 0 · x are
always zero. Our efficient MPC design avoids unnecessary
secure computation over unrelated nodes by focusing on
computing non-zero results while concealing the sparse
topology. We achieve this by: 1) decomposing the sparse
matrix A into a product of matrices, including permutation
and binary diagonal matrices, that can faithfully represent
the original graph topology; 2) devising specialized proto-
cols for efficiently multiplying the structured matrices while
hiding sparsity topology.

2.1.1. Sparse Matrix Decomposition. We decompose ad-
jacency matrix A of G into two bipartite graphs: one repre-
sented by sparse matrix Aout, linking the out-degree nodes
to edges, the other by sparse matrix Ain, linking edges to
in-degree nodes.

We then permute the columns of Aout and the rows
of Ain so that the permuted matrices A′

out and A′
in have

non-zero positions with monotonically non-decreasing row
and column indices. A permutation σ is used to preserve
the edge topology, leading to an initial decomposition of
A = A′

outσA
′
in. This is further refined into a sequence of lin-

ear transformations, which can be efficiently computed by
our MPC protocols for oblivious permutation and oblivious
selection-multiplication. Our decomposition approach is not
limited to GCNs but also general sparse matrices.

2.1.2. New Protocols for Linear Transformations. Oblivi-
ous permutation (OP) is a two-party protocol taking a private
permutation σ and a private vector X from the two parties,
respectively, and generating a secret share ⟨σX⟩ between
them. Our OP protocol employs correlated randomnesses
generated in an input-independent offline phase to mask
σ and X for secure computations on intermediate results,
requiring only 1 round in the online phase (cf., ≥ 2 in
previous works [21], [22]).

Figure 1: Ideal Functionality of GRACE

Another crucial two-party protocol in our work is obliv-
ious selection-multiplication (OSM). It takes a private bit s
from a party and secret share ⟨x⟩ of an arithmetic num-
ber x owned by the two parties as input and generates
secret share ⟨sx⟩. Our 1-round OSM protocol also uses pre-
computed randomnesses to mask s and x. Compared to the
Beaver-triple-based [23] and oblivious-transfer (OT)-based
approaches [24], our protocol saves ∼50% of online com-
munication while having the same offline communication
and round complexities.

By decomposing the sparse matrix into linear transfor-
mations and applying our specialized protocols, our (SM)2
protocol reduces the complexity of evaluating |V| × |V|
sparse matrices with |E| non-zero values from O(|V|2) to
O(|E|).

2.2. GRACE: Secure GCN made Efficient

Supported by our new sparsity techniques, we build
GRACE, a two-party computation (2PC) framework for GCN
inference and training over vertical data.

2.2.1. Workflow of GRACE. Figure 1 outlines GRACE’s
function. A graph owner P0, with an adjacency matrix A
corresponding to a private graph G, and a feature owner
P1 with private node features X, aim to jointly train a
GCN without revealing their private inputs. This involves
computing a parameterized function GCN(A,X;W), where
the weights W are secret-shared over the two parties.

The GRACE framework includes a sparse matrix decom-
position method and secure 2PC protocols for permutation
(ΠOP), selection-multiplication (ΠOSM), and SMM (Π(SM)2).
The sparse matrix decomposition is performed solely by the
graph owner, while all 2PC protocols are executed by both
parties without disclosing any intermediate computations.

In practical cross-institution collaboration, graph owners
can be social networking platforms (e.g., Facebook) holding
social relationships as a graph, and feature owners can be
banks holding users’ bank statements as node features. As
a motivating example, they may want to build a credit-
investigation model for predicting the credit of a loaner for
future repayment while keeping their data confidential. Our
setting can be extended to multi-party, where different types
of node features are learned from different parties (e.g.,
bank statements from banks and transactions from online-
shopping companies). Usually, the graph structure is fixed
to represent a specific relationship, such as a social circle, in



real-world scenarios. Thus, we focus on single-party graph
ownership without limiting feature ownerships.

2.2.2. Security Model. GRACE can be instantiated with
any type of security models offered by the corresponding
MPC protocols. Following advances [7], [8], [14], [25],
[26], [27], GRACE focuses on 2PC security against the static
semi-honest probabilistic polynomial time (PPT) adversary
A regarding the real/ideal-world simulation paradigm [28].
Specifically, two parties, P0 and P1, with inputs ⟨x⟩0 and
⟨x⟩1, want to compute a function y = f(⟨x⟩0, ⟨x⟩1) without
revealing anything other than y. A corrupts either P0 or
P1 at the start, following the protocol, but tries to learn
the other’s private inputs. A can only learn data from the
corrupted party but nothing from honest ones.

Many protocols utilize pre-computations for improving
efficiency, e.g., Beaver triples [23] for multiplication. They
can be realized by a data-independent offline phase run by a
semi-honest dealer T or 2PC protocols from homomorphic
encryption [29] or oblivious transfer [24], [30] or oblivious
shuffle [31], [32]. We adopt the first common approach (also
called client-aided setting [25]) for simplicity. The T does
not interact with any party (particularly, receives nothing)
online. It only generates pseudo-randomnesses in an input-
independent offline phase by counter-indexed computations
of pseudorandom function (PRF), where T and Pi share a
PRF key (denoted by keyi) for i ∈ {0, 1} and a counter ctr
are synchronized among all parties.

2.2.3. Scope of Graph Protection. Like existing MPC
works, GRACE protects the entry values stored in the graph
and (intermediate) computations. For metadata, most secure
matrix multiplication protocols (without sparse structure) re-
veal input dimensionality (e.g., |V| in GCN) that is typically
considered public knowledge. When sparsity is explored, it
is normal to leak reasonable knowledge, such as |V| + |E|
in GraphSC [33]. In GRACE, the only additional metadata
revealed is |E|. This leakage is tolerable (and unavoidable)
since the efficiency gain is correlated to |E|. Corresponding
to GRACE’s GCN training, the dimension of adjacency
matrix A (i.e., equal to |V|) and the dimension of feature
matrix X are assumed to be public.

Privacy leakages from training/inference results, e.g.,
embedding inversion and sensitive attribute inference, also
appear in plaintext computations and are beyond our scope.
These can be protected via orthogonal techniques like (lo-
cal) differential privacy and robustness training, which are
compatible with our work. In the semi-honest settings, the
attacker can only view the well-formed secret shares and not
actively perform the malicious attacks like model inversion.

3. Results & Evaluation

We are the first to explore sparsity over vertically split,
secret-shared data in MPC, enabling decompositions of
sparse matrices with arbitrary sparsity and isolating compu-
tations that can be performed in plaintext without sacrificing
privacy.

We propose two efficient 2PC primitives for OP and
OSM, both optimally single-round. Combined with our
sparse matrix decomposition approach, our (SM)2 protocol
(Π(SM)2) achieves constant-round communication costs of
O(|E|), reducing memory requirements and avoiding out-of-
memory errors for large matrices. In practice, it saves 99%+
communication and reduces ∼72% memory usage over large
(5000×5000) matrices compared with using Beaver triples.

We build an end-to-end secure GCN framework for
inference and training over vertically split data, maintaining
accuracy on par with plaintext computations. We evaluate
the performance of our (SM)2 protocol and GRACE’s private
GCN inference/training on three Ubuntu servers with 16-
core Intel(R) Xeon(R) Platinum 8163 2.50GHz CPUs of
62GB RAM and NVIDIA-T4 GPU of 16GB RAM. To
evaluate GRACE, we conducted extensive experiments over
three standard graph datasets (Cora [34], Citeseer [35], and
Pubmed [36]), reporting communication, memory usage, ac-
curacy, and running time under varying network conditions,
along with an ablation study with or without (SM)2. Below,
we highlight our key achievements.

Communication. GRACE saves communication overhead
by 62%-78% for training and 46%-81% for inference.
(cf., CoGNN [27], OblivGNN [15]).

Memory usage. GRACE alleviates out-of-memory prob-
lems of using Beaver-triples [23] for large datasets.

Accuracy. GRACE achieves inference and training accu-
racy comparable to plaintext counterparts.

Computational efficiency. GRACE is faster by 6-45% in
inference and 28-95% in training across various networks
and excels in narrow-bandwidth and low-latency ones.

Impact of (SM)2. Our (SM)2 protocol shows a 10-
42× speed-up for 5000× 5000 matrices and saves 10-21%
memory for “small” datasets and up to 90%+ for larger
ones.

4. Conclusion

We propose GRACE, a secure 2PC framework for GCN
inference and training over vertically partitioned data, a
neglected MPC scenario motivated by cross-institutional
business collaboration. It is supported by our (SM)2 protocol
using a sparse matrix decomposition method for converting
an arbitrary-sparse matrix into a sequence of linear transfor-
mations and employing 1-round MPC protocols of oblivious
permutation and selection-multiplication for efficient secure
evaluation of these linear transformations.

Our work provides an open-source baseline and exten-
sive benchmarks for practical usage. Theoretical and empir-
ical analysis demonstrate GRACE’s superior communication
and memory efficiency in private GCN computations. For
further research with various partitioning, researchers can
streamline the hybrid MPC protocols by integrating plaintext
handcrafts, leveraging secure computation as a pragmatic
alternative for cross-organizational collaboration. Hopefully,
our insight could motivate further research on private graph
learning.
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